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This paper applies a multilevel analysis based on statistical physics to detect structures of semiconductor a-SiC:H thin-film 
alloys with the best possible electrical performance expressed as a function of the temperature and hydrogen flow. Toward 
promoting the multidisciplinary demand in statistical physics, this paper broadens the conceptualization of the natural 
visibility graph algorithm by applying it to conductivity activation energy instead of time series; to study datasets described 
by insufficient information as a complex network. The statistical analysis shows that the conductivity activation energy is 
statistically indifferent to the temperature without the supply of hydrogen flows. However, the variation captured amongst 
conductivity activation energy levels supplied by hydrogen flows does not appear statistically significant. Hydrogen flows to 
the semiconductor body leads to better semiconductor structures at lower temperatures, where a zone of 17-20sccm has 
better conductivity activation energy levels. Finally, the network analysis reveals a rich-club configuration of temperatures 
and leads to three distinct conductivity activation energy states, corresponding to different structural (semiconductor) 
behaviors of the a-SiC:H thin-film alloys. The overall analysis proposes a framework of dealing with complexity under 
insufficient information, where traditional methods of statistical physics are of marginal functionality. 
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1. Introduction 
 

The high cost of energy that emerged in the post-

industrialization era has led humanity to renewable energy 

sources and to the exploitation of solar energy, where 

crystal semiconductor photovoltaic panels suggest a 

popular solar energy device [1,2]. The amorphous 

semiconductor materials have caused a particular research 

interest because they have more advantages than mono-

crystal semiconductor materials [2]. Such benefits concern 

their ability to apply in a thin-film format to large surfaces 

[3], their less expensive fabrication due to their high 

absorption factor [4], and their compatibility with other 

semiconductor elements (Ge, Si, C) for composing alloys 

of desiring properties [5]. Especially the amorphous 

silicon (a-SiC) thin-film alloys have attracted much 

interest due to their successful use in photovoltaic panel 

applications [5,6]. The prime techniques of constructing a-

SiC thin-film alloys are either RF sputtering natural 

process for the non-hydrated (a-SiC) alloys or the 

chemical process for the (a-SiC:H) hydrated alloys [7], the 

Glow Discharge plasma process [8], and the chemical 

vapor deposition (CVD) process [9]. Amongst these three 

techniques, RF sputtering is the most commonly used [5,7] 

due to its lower application cost, its free-of-toxicity 

applicability, easy-to-use in industrial applications, and 

repeatability in providing standardized outcomes [5,10].   

The use of a-SiC:H thin-film alloys in p-i-n (a-

SiC:H(p)/a-Si:H(i)/a-Si:H(n))  photovoltaic components, 

which are of high photovoltaic performance, has widely 

attracted the research interest, especially towards the 

direction of optimizing the optoelectronic attributes of a-

SiC:H that aim to the decrease of the energy gap and thus 

to the exploitation of a broader range of the solar spectrum 

[5,10]. A prime effort towards this direction concerns 

increasing carbon concentration in the a-SiC:H thin-film 

alloys, which causes a consequent increase of their optical 

energy gap up to a critical ceiling value, while afterward, 

the energy gap decreases [11,12]. However, carbon 

concentration increase induces the alloys’ structural 

disordering that is related to a subsequent downgrade of 

their optoelectronic attributes [12]. Therefore, another 

direction for the photovoltaic performance optimization 

regards the control of the hydrogen concentration to the a-

SiC:H thin-film alloys composition [11,12], which results 

in better structures compared to the carbon control 

techniques.  

Within this context, based on the RF-sputtering 

development of a-SiC:H thin-film alloys, this paper 

examines their structural and electric properties as a 

function of the temperature and hydrogen flow. The 

overall approach employs techniques of statistical physics 

that can be applicable in cases of insufficient information, 

which are mainly related to laboratory or experimental 

restrictions due to high application costs. In particular, this 

paper uses experimental data of the RF-sputtering 

development of a-SiC:H thin-film alloys, in which the 

temperature ranges between 30 and 330oC and the 
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hydrogen flow belongs to the set {0,9, 14, 20sccm}. The 

methodological approach builds on statistical physics due 

to its ability to deal with non-linear patterns resulting from 

the complex structure and topology related to the 

amorphous crystal configuration [10]. In general, the non-

linear conceptualization in the research of amorphous 

semiconductors has been evident in the literature for 

almost three decades [13-15], in terms of structure [16], 

dynamics [17,18], optical behavior [17,20], energy 

applications, and physical properties [16]. Indicative 

approaches in the research of amorphous semiconductors 

employ non-linear stochastic processes [17], quantum-

physics modeling of conductivity [15,19], non-linear and 

chaotic time series analysis [19-22], and structural 

modeling of super-lattice topologies [18].  

Among such approaches, some works build on an 

aspect of statistical physics related to complex network 

analysis and network science. For instance, the authors of 

[23] developed queuing network models to design and 

analyze semiconductor wafer-fabs. The authors of [24] 

used complex network analysis to study cluster 

synchronization of mutually-coupled semiconductor lasers 

(SLs) networks with complex topology.  

Network science is a modern discipline using the 

network paradigm to model communication systems into 

pair-sets of nodes and links [25,26] and enjoys 

multidisciplinary research that has been proven fruitful in 

providing insights about the structure and functionality of 

complex systems consisting of interconnected entities. An 

indicative example of the composite nature of network 

science is the modern research field of complex network 

analysis of time series. This approach builds on a 

combined statistics and physics conceptualization and 

enjoys applications in various disciplines, such as 

econometrics, finance, medicine, engineering, and more 

[27,28]. This field employs methods transforming a time 

series into complex networks that allow studying a time 

series as a complex network within a higher order of 

complexity context [29-33]. Toward promoting this 

multidisciplinary demand, this paper broadens the 

conceptualization of complex network analysis of time 

series by applying a fundamental technique to a 

conductivity activation energy instead of time series data; 

to study the performance of a-SiC:H thin-film alloys as a 

function of temperature and hydrogen flow. The overall 

approach proposes a framework of dealing with 

complexity under insufficient information, where 

traditional methods of statistical physics are of marginal 

functionality. The results of applying the proposed 

methodological framework to the case of a-SiC:H thin-

film alloys are compared with available theoretical and 

experimental findings to evaluate the effectiveness of the 

proposed framework. 

The remainder of this paper is structured as follows: 

Section 2 presents the methodology and data of the study; 

describing in detail the laboratory and the proposed 

methodological framework based on statistical physics and 

complex network analysis of time series. Section 3 shows 

the analysis results and discusses them under available 

experimental findings on a-SiC:H thin-film alloys 

research. Finally, Section 4 provides the conclusions. 

 

2. Methodology and data 
 

The methodological framework of the study employs 

techniques of statistical physics to study the electrical 

properties (expressed by the amount of conductivity 

activation energy Ea) of semiconductor a-SiC:H thin-film 

alloys as a function of the temperature (ranging between 

30 and 300oC) and hydrogen flow (ranging between, 0, 9, 

14, and 20sccm). The methodological framework consists 

of a multilevel analysis including three steps; the first 

builds on statistical inference analysis, the second on 

pattern recognition, and the third on network analysis. 

Each step is described in brief in the following sections. 

 

2.1. Laboratory background and data 

 
Laboratory experiments measured the dependence of 

structural, optical, and electrical properties of a-SiC:H thin 
films [34,35], deposited by using the RF-sputtering 
process on the substrate temperature. This procedure took 
place for different hydrogen flow rates so that to gain the 
optimum material quality. The characterization of a-SiC:H 
used measurements of transmission electron microscopy 
[36], scanning electron microscopy [37], electron 
microanalysis [37], electron Auger spectroscopy [38], 
optical transmission in the range of the visible and infrared 
spectrum; of dark electrical conductivity in different 
temperatures; and electrical conductivity under certain 
conditions of illumination [34]. Also (based on a-SiC:H, 
characterization of Schottky diodes and “heterojunctions”) 
was conducted by using measurements of current-bias 
voltage (I-V) [39], in different temperatures, differential 
capacitance-bias voltage (C-V), and spectral response (n-λ) 
measurements [34].  

Within this context, the available data of the study 

regard measurements of the conductivity activation energy 

(Ea) of a-SiC:H thin-film alloys [34,35], which are 

expressed as a function of temperature (Ts) and hydrogen 

flow (Hf),  as shown in Fig.1. 

 
Fig.1. The available a-SiC:H conductivity activation 

energy (Ea) dataset, expressed as a function of 

temperature (Ts) and hydrogen flow (Hf). Data source: 

[34] and [35] (color online) 

In particular, the Ea measurements extracted from four 

temperature flows referring to 0, 9, 14, and 20sccm 

Ea 

Ts 

Hf 
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(standard cubic centimeters per minute), each configuring 

a temperature curve ranging between 30 and 300oC. More 

specifically, the temperature range is calibrated at 30, 100, 

120, 140, 160, 180, 220, 250, 270, 290, 300, and 320oC. 

Each a-SiC:H conductivity activation energy curve 

Ea=f(Ts, Hf) referring to a certain level of hydrogen flow 

Ea(Hf=i, where i=0,9,14,20sccm) is expressed as a function 

of temperature Ea=f(Ts | Hf=i, where i=0,9,14,20sccm) and 

therefore four (4) distinct conductivity activation energy 

curves Ea(1)=f(Hf:0sccm), Ea(2)=f(Hf:9sccm), Ea(3)=f(Hf 

:14sccm), and Ea(4)=f(Hf :20sccm) are available. In terms 

of data analysis [40,41], the available experimental data 

are insufficient in applying high-reliability statistical 

analysis. Within this context of insufficient information, 

the methodological framework builds on a multilevel 

consideration consisting of different methodological 

aspects (statistical inference analysis, pattern recognition 

based on parametric fitting, and network analysis); to 

compare the separate results of each analysis and 

configure conclusions based on the detected 

commonalities.  

 

2.2. Statistical inference analysis 

 

At the first step of the analysis, a statistical inference 

analysis applies to the available levels of a-SiC:H 

conductivity activation energy (Ea) to detect whether they 

are statistically different. The inference analysis builds on 

computing the confidence intervals (CIs) for the parameter 

θ (theta), according to the relation [40,41]:  

 

,{ , } 1 / 2 , 2a l u a n
t s


 

 
  

              (1) 

 

where: 1 /2, 2a nt    is the value of the Student’s t-distribution 

(used instead of normal due to insufficient data) computed 

for a% confidence coefficient (1–a% confidence level) 

and n–2 degrees of freedom; sθ is the standard deviation of 

the available dataset X on which we estimate the theta 

parameter; and {l,u} are indicators referring to lower and 

upper bound of the CI respectively. In this step, the theta 

(θ) parameters that are estimated are the average (θ=μ{X}) 

and the maximum (θ=max{X}) value, respectively. 

Overlaid CIs ( ,{ , },1 ,{ , },2a l u a l u
   ) imply that the two 

estimated parameters θ1 and θ2 are likely to be equal (with 

up to 1–a% likelihood), whereas those not overlaying are 

1–a% likely to differ [41]. On the one hand, the average-

values testing applies amongst variables of different 

hydrogen flows (between flow levels), expected to provide 

insights into the emergence of structural differences 

between these flow levels in the a-SiC:H thin-film alloys 

conductivity activation energy (Ea) values. On the other 

hand, the maximum-values testing is implemented both 

amongst variables of different hydrogen flows (between 

flow levels) and amongst values of the same hydrogen 

flows (within flow levels). The between-flow 

consideration aims to support and complement the insights 

into the average-value testing and tests whether the a-

SiC:H thin-film alloys structure is affected by changes of 

hydrogen flows. On the other hand, the within-flow 

consideration is expected to test whether the a-SiC:H thin-

film alloys structure is affected by the temperature changes 

when hydrogen flows is constant. 

 

2.3. Pattern recognition 

 

We apply pattern recognition of the a-SiC:H thin-film 

alloys structure by using parametric fitting [40] to the 

available conductivity activation energy data Ea=f(Ts, Hf) 

expressed as a function of temperature (Ts) and hydrogen 

flows (Hf). The types of the available fitting curves 

examined in this part of the analysis are: linear (1st-order 

polynomial), quadratic (2nd-order polynomial), cubic 

(3rd-order polynomial), power, Gaussian, exponential, and 

logarithmic fittings.  

Generally, all available fitting-curve types can have 

the following mathematical expression [40,41]: 

 

1 2
|ˆ , , ...,( )

n
y x b b bf

                       (2) 

 

where n is the number of the desired fitting parameters and 

the f(x) function can be either logarithmic f(x)=(log(x)), or 

polynomial f(x)=xm, or Gaussian f(x)=exp{(x-μ)/σ, or 

exponential f(x)=(exp{x}), or any other. Within this 

context, the fitting analysis aims to estimate the bi 

parameters that best fit the observed data y, so that to 

minimize the square differences ˆ
i i

y y  [41], according to 

the relation: 
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where f(xi)=yi. The beta coefficients (bi) are estimated 

using the Ordinary Least-Squares (OLR) method [41], 

based on the assumption that the differences e in relation 

(3) follow the normal distribution N(0,σe
2) [40,41]. Due to 

the insufficient information of the available dataset, the 

results of parametric fitting are evaluated at the 

macroscopic level, namely according to the type 

(typology) of the best fitting instead of their specialized 

(exact) mathematical formula. 

 

2.4. Network analysis 

 

Network analysis is applied to graph models, which 

are generated by a transformation based on the (natural) 

visibility graph (NVG) algorithm that is proposed by the 
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authors of [32] to transform a time series into a complex 

network. However, this study broadens the 

conceptualization of the NVG by applying it to discrete a-

SiC:H conductivity activation energy datasets of the form 

Ea=f(Ts, Hf)  instead of to time series. This allows 

generating visibility graphs (associated with 

countable/discrete datasets) beyond the temporal 

conceptualization of time series analysis [28,30,31,42], 

introducing avenues of further research. After the NVG 

transformation, the topological properties of the associated 

visibility graphs are studied by computing network 

measures capturing different aspects of network topology 

and by detecting structural properties based on the 

modularity optimization approach. The network analysis is 

complementary to the previous statistical-based methods 

to the extent that it studies a graph structure (associated 

with a discrete dataset) instead of its source dataset and 

therefore it broadens the (source) data-space that is 

described by insufficient information. The parts 

composing the network analysis are described in brief in 

the following paragraphs. 

 

■ Graph transformation: the natural visibility  

    graph algorithm 

 

The natural visibility (NVG) algorithm was proposed 

by the authors of [32]. The algorithm conceptualizes a 

time series as a landscape [28,42] and particularly as a 

sequence of successive mountains of differential height. 

Within this context, an observer standing on each 

mountain (expressing a time series node) can see, in both 

directions, as far as no other node obstructs its visibility, as 

shown in Fig. 2.  

 

 

 
 

Fig. 2. (left) Example of a pair of visible (x1,x2) and non-visible (x2,x4) time series according to the natural visibility  

algorithm (NVG), (right) the visibility graph associated with the time-series shown at the left side (color online) 

 

For a sequence (tk, x(tk)), k=1,2,…, where x(tk) are the 

numerical value of the time series’ nodes at time tk, we can 

correspond a time series node (tk, x(tk)) to a graph node nk, 

namely nk≡(tk, x(tk))V. In the visibility graph G(V,E) 

associated with the time series, where V expresses the 

node-set and E the edge-set, we can define that a pair of 

nodes ni,njV are connected (ni,nj)E whether the NVG 

connectivity criterion (inequality) is satisfied, as described 

by the relation: 

 

( ) ( ) ( ( ) ( ))
k i

k i j i

j i

x t
t t

x t x t x t
t t


  


                    (4) 

 

where ni≡(ti,x(ti)) are the graph nodes and (tj, x(tj)) their 

corresponding time series nodes. In geometric terms, a 

visibility line is drawn between two nodes (ti,x(ti)), (tj,x(tj)) 

of the time series whether no other node (tk,x(tk)) that 

intermediates them obstructs their visibility. This implies 

that no other node intermediating the pair (ti,x(ti)), (tj,x(tj)) 

is higher so that to intersect their visibility line, as it is 

shown in Fig.2. Therefore, two nodes ni≡(ti,x(ti)), 

nj≡(tj,x(tj)) in the time series can enjoy a connection 

(ni,nj)E in the associated visibility graph G(V,E) when 

they are visible through a visibility line. The NVG 

interprets the time series as a landscape and generates a 

visibility graph corresponding to this landscape so that 

complex network analysis to be further applied [28,32,42]. 

 

■ Network measures 

 

The visibility graph is an undirected and unweighted 

graph model [28,42], where complex network analysis 

applies to examine its topological and structural features. 

The network measures that are used for this part of the 

analysis are shown in Table 1, and they were extracted 

from the relevant literature [43-45].  
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Table 1. Network measures(*) used in the analysis 

 

Measure Symbol Description Math Formula 

Graph density  ρ The fraction of the existing connections of the 

graph to the number of possible connections. It 

expresses the probability to meet in the GMN a 

connected pair of nodes. 

2

2 ( 1)

n m
m

n n


 
  

  
 

Node Degree k The number of edges that are adjacent to a given 

node, expressing the node’s communication 

potential. 
( )

( ) ,  where

1,  if ( )
 

0,  otherwise

i ij

j V G

ij

ij

k k i

e E G







 









 

Node strength s The sum of edge weights that are adjacent to a 

given node. 
( )

( ) ,

where ( ) in km

i ij ij

j V G

ij ij

s s i w

d w e




  





 Average path 

length  
l  Average length d(i,j) of the total of network 

shortest paths. 
( , )

( 1)

i j

v V

d v v

l
n n


 



 
Clustering 

coefficient (local) 

C(i) Probability of meeting linked neighbors around a 

node, which is equivalent to the number of the 

node’s connected neighbors E(i) (i.e. the number of 

triangles), divided by the number of the total 

triplets shaped by this node, which equals to ki(ki–

1).  

 

( )
( )

1i i

E i
C i

k k


 
 

Modularity Q Objective function expressing the potential of a 

network to be subdivided into communities. In its 

mathematical formula, gi is the community of node 

iV(G), [Aij – Pij] is the difference of the actual 

minus the expected number of edges falling 

between a particular pair of vertices i,jV(G), and 

δ(gi,gj) is an indicator function returning 1 when 

gi=gj. 

,

[ ] ( , )

2

ij ij i j

i j

A P g g

Q
m

 





 

Closeness 

centrality 

CC The inverse of total binary distance d(i,j), computed 

on the shortest paths originating from a given node 

iV(G) with destinations all the other nodes 

jV(G) in the network. This measure expresses the 

node’s reachability in terms of steps of separation. 

 
1

1

1,

1
( )

1

n

ij i

j i j

CC i d d
n





 

 
   

 


 

Betweenness 

centrality 

CB The proportion of the (σ) shortest paths in the 

network that pass through a given node i.  
( ) ( )CB i i 

 *. Sources: [43-45]
 

 

■ Community detection based on modularity  

    optimization 

 

At the third step of network analysis, the associated 

visibility graph is divided into connected communities by 

using the modularity optimization algorithm proposed by 

[46]. Modularity is an objective function quantifying a 

network’s potential to be subdivided into communities 

[47]. A modularity optimization algorithm is a greedy 

approach that divides a graph into communities. This is 

possible under the criterion of maximizing connectivity 

within the communities (the intra-community 

connectivity), which results in the minimization of the 

connectivity between the communities (the inter-

community connectivity), as expressed in the relation [47]:  

 

maximize [Q  ( mwithin communities – mbetween communities )] (5) 

 

where Q is the modularity function and m is the number of 

network links.  

The modularity optimization algorithm is applied in 

two steps [46,47]. At the first, each graph node is 

registered into a separate community. Next, network nodes 

are step-wisely being swept and placed to collective 

communities, whether the gain in the weighted modularity 

function (Q=Q(wij)) of the initial graph is increased when 

a node is assigned into a collective community. At the 

second step, the collective communities are replaced by 

super-nodes and the process is repeated until the 

modularity function cannot increase any more [47,48]. For 

a thorough review, see the review article of [47].   

 

 
3. Results and discussion 
 
■ Statistical inference analysis 

 

At the first part of the analysis, a statistical inference 

analysis is applied to the available levels of a-SiC:H 

conductivity activation energy (Ea) to detect whether they 
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are statistically different. Fig.3 shows the results of the 

confidence interval (CI) analysis that examines whether 

the maximum values of the conductivity activation energy 

are statistically different; for each hydrogen flow Ea=f(Ts | 

Hf=i, where i=0,9,14,20sccm).  

 

 

 
Fig. 3. Error bars of 95% CIs showing how the a-SiC:H conductivity activation energy (Ea) ranges as a function of temperature 

(Ts), for hydrogen flows (Hf) of (a) 0sccm, (b) 9sccm, (c) 14sccm, and (d) 20sccm. Coloured zones imply the range of the 

maximum values per hydrogen flow level (color online) 

 

As it can be observed in Fig.3, for all cases except for 

Hf=0 the hypothesis is retained, indicating that the values 

of the a-SiC:H maximum conductivity activation energy 

{Ea,9,max, Ea,14,max, and Ea,20,max} are statistically different 

than the other values for a certain hydrogen flow. This 

implies that, for zero hydrogen flow (Hf=0), the 

conductivity activation energy can be considered 

statistically indifferent to the temperature, which verifies 

the experimental hypothesis of [34] and [35], whereas, for 

non-zero hydrogen flows (Hf=9,14, and 20), it cannot (i.e. 

the conductivity activation energy can be considered 

statistically dependent to the temperature).  

Further, Fig.4 shows the results of the 95% CIs 

computed on the average (Fig.4a) and maximum (Fig.4b) 

values of a-SiC:H conductivity activation energy. This 

analysis aims to examine whether these conductivity 

activation energy values are statistically different amongst 

the levels of hydrogen flows.  

 

 
Fig. 4. Error bars of 95% CIs showing how the average a-SiC:H activation-energy (Ea) ranges as a function of temperature 

(Ts), for hydrogen flows (Hf) of (a) 0sccm, (b) 9sccm, (c) 14sccm, and (d) 20sccm. Coloured zones imply the range of the 

maximum values per hydrogen-flow level (color online) 
 

(a) (b) 

 

(c) 

  

(d) 
  

(a) (b) 95%CI <Ea> 95%CI max{Ea} 
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As it can be observed, for both the average-value 

(Fig.4a) and maximum-value (Fig.4b) cases the zero-flow 

level (Hf=0) is statistically different than the others, but no 

such observation can be made for the other hydrogen flow 

levels because their CIs overlay. These results imply that 

the application of non-zero hydrogen flows can 

statistically change the levels of a-SiC:H conductivity 

activation energy (and thus the semiconductor’s structure), 

comparatively to the hydrogen-free state, but the 

conductivity activation energy levels amongst non-zero 

hydrogen flows cannot be considered as statistically 

different. 

 

■ Pattern recognition 

 

At the second part of the analysis, pattern recognition 

based on parametric (curve) fitting is applied to the 

available levels of a-SiC:H activation energy (Ea). The 

results of this analysis are shown in Fig.5, where the best 

possible fittings that can be applied to the available dataset 

are the linear (Poly1) for zero hydrogen flow (Hf=0) level, 

the two-term Gaussian (Gauss2) for the 9sccm hydrogen 

flow (Hf=9) level, the two-term exponential (Exp2) for the 

14sccm hydrogen flow (Hf=14) level, and the two-term 

Gaussian (Gauss2) for the 20sccm hydrogen flow (Hf=20) 

level. All best-fittings associated with non-zero hydrogen 

flow levels are convex-shaped patterns, which implies that 

a global maximum can be found in each case. This result 

complies with the experimental findings of [34] and [35], 

who observed the existence of a substrate temperature, 

which is a function of the hydrogen flow rate at which the 

optimum quality of a-SiC:H is achieved. 

 

 
 

Fig. 5. Fitting curves applied to the a-SiC:H conductivity activation energy (Ea) dataset that is expressed as  

a function of temperature (Ts), for different levels of hydrogen flows (Hf) (color online) 

 

At a further approach, pattern recognition based on 

parametric (curve) fitting is applied to the levels of a-

SiC:H maximum conductivity activation energy (Ea,max) 

that is expressed as a function of hydrogen flow 

Ea,max=f(Hf). The results of this analysis are shown in 

Fig.6, where the three best possible fittings that can be 

applied to the available dataset are the linear (Poly1), with 

an adjusted (adj.) coefficient of determination equal to 

R2
Poly1,adj = 0.883, the Gaussian (Gauss1), with R2

Gauss1,adj = 

0.948, and the quadratic (Poly2), with R2
Poly2,adj = 0.984. 

As it can be observed, amongst these best fittings, the 

Gaussian (Gauss1) and quadratic (Poly2) have the highest 

coefficient of determination, which expresses that there is 

the most likely the conductivity activation energy function 

Ea,max=f(Hf) to have a convex shape. Within the context of 

insufficient information describing the available dataset, 
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this observation implies that the behavior of the a-SiC:H 

conductivity activation energy as a function of hydrogen 

flow is described by a global maximum point, which for 

both the Gauss1 and Poly2 fittings is defined for the 

20sccm hydrogen flow. Although is not available from the 

experimental data, according to these fitting patterns, 

values of conductivity activation energy for hydrogen 

flows greater than 20sccm (Hf > 20sccm) are expected to 

correspond to lower levels of conductivity activation 

energy. This implies that higher than 20sccm hydrogen 

flow levels are the most likely to be described by lower 

values of conductivity activation energy than this 

corresponding to the hydrogen flow level of 20sccm and 

thus that is the most likely to be described by worse 

structures.  

Finally, we apply curve fitting pattern recognition to 

the levels of the temperature of a-SiC:H maximum 

conductivity activation energy (Tmax=T(Ea,max)), expressed 

as a function of hydrogen flow. The Tmax is defined as the 

temperature where the maximum conductivity activation 

energy appears for the available levels of hydrogen flows 

{0, 9, 14, and 20 sccm}. 

  

 
 

Fig. 6. (a) Quadratic (Poly2), (b) Gaussian (Gauss1), and (c) linear (Poly1) fitting curves applied to the a-SiC:H  

maximum conductivity activation energy (Ea,max) dataset that is expressed as a function of hydrogen flows (Hf) (color online) 

 
The results of this analysis are shown in Fig.7, where 

four best possible fittings are detected, the linear (Poly1), 

with R2
Poly1,adj = 0.955, the power (Power1), with R2

Power1,adj 

= 0.934, the exponential (Exp1), with R2
Poly2,adj = 0.990, 

and the quadratic (Poly2), with R2
Poly2,adj = 0.998. As it can 

be observed, all these fittings illustrate a decaying pattern 

of the temperature of maximum conductivity activation 

energy (Tmax) as a function of hydrogen flow. This implies 

that the supply of hydrogen flow to the semiconductor 

body lowers the temperature at which the maximum 

conductivity activation energy appears and therefore better 

semiconductor structures are succeeded at lower 

temperatures. The shape of all fittings except the linear 

also implies that the temperature gain for hydrogen flows 

greater than 20sccm (Hf > 20sccm) is expected to be 

relatively lower than this of the previous states, which 

implies that better structures are unprofitable to achieve at 

high (Hf > 20sccm) hydrogen flows. In conjunction with 

the previous consideration, this observation describes the 

existence of optimum semiconductor structures at the level 

of 17-20sccm where the maxima of the bell-shaped curves 

appear.  

 

(a) 

(b) (c) 
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Fig. 7. (a) Power (Power1), (b) exponential (Exp1), (c) linear (Poly1), and (d) quadratic (Poly2) fitting curves applied to the 

temperature of a-SiC:H maximum conductivity activation energy (Tmax=T(Ea,max)) dataset, at which the maximum conductivity 

activation energy appears, expressed as a function of hydrogen flows (Hf) (color online) 

 

■ Network analysis 

 

In the third part, we apply complex network analysis 

to the graph models generated by the visibility graph 

(NVG) algorithm [32]. Although the NVG is defined 

within a time series context, this analysis broadens its 

applicability and applies the algorithm to discrete 

conductivity activation energy instead of time-series 

datasets. At the first step, the a-SiC:H conductivity 

activation energy data for each level of hydrogen flows are 

transformed into graph models, as shown in Fig.8. We 

apply a hub detection analysis to these graph models, 

conducted by node-degree (for the case of each separate 

layer) and node-strength (weighted-degree, for the 

aggregate case). Node labels in the visibility graphs 

correspond to temperature values (Ts). As is evident, the 

network-hubs (maximum-degree nodes) vary across 

different levels of hydrogen flows, where the temperatures 

Ts=110 and 220oC are hubs for the 0sccm level, the 

temperature Ts=180oC is a hub for the 9sccm level, the 

temperature Ts=140oC is a hub for the 14sccm level, and 

the temperature Ts=120oC is a hub for the 20sccm level. In 

the aggregate (overlaid) visibility graph, this perplex 

picture configures a rich-club [26,49,50] structure 

consisting of the temperatures Ts={120, 140, 160, 180}oC, 

which represents a highest activation-energies zone. This 

rich-club configuration illustrates the temperature range of 

[120,180]oC where better a-SiC:H structures can be 

developed regardless of the level of hydrogen flows. 

 

(a) (b) 

(c) (d) 
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Fig. 8. Visibility graphs that are associated with the a-SiC:H conductivity activation energy (Ea) datasets for each level of 

hydrogen flows (0, 9, 14, and 20sccm) and the overlaid (aggregate) dataset including all hydrogen flow levels. Node labels 

correspond to temperature values (Ts) (color online) 

 
Provided that the aggregate visibility graph can deal 

with a higher level of complexity, the second step of 
network analysis examines the node-distribution for 
network topological measures of degree, betweenness 
centrality, closeness centrality, clustering coefficient, 
strength, and modularity classification. The results of the 
analysis are shown in Fig.9. Within a degree-driven 
consideration expressed by the measures of degree 
(Fig.9a) and strength (Fig.9e), the rich-club configuration 
of the temperatures {120, 140, 160, 180}oC implies a zone 
of better a-SiC:H structures regardless of the level of 
hydrogen flows. According to a path-defined 
consideration, as it is expressed by the measure of 

betweenness centrality (CB, Fig.9b), the temperature of 
180oC is a crucial node included in most of the network 
paths of the aggregated visibility graph. This observation 
implies that the temperature of 180oC can suggest a 
threshold in the aggregate network’s structure and 
secondly the temperature of 120oC. This consideration 
supports the rich-club configuration that was previously 
observed and it further supports the division of the 
available dataset into the temperature groups TA={30, 100, 
110}oC, TB={120, 140, 160, 180}oC, and TC={220, 250, 
270, 290, 320}oC. This grouping can also be supported by 
the results of closeness centrality (Fig.9c) and clustering 
coefficient (Fig.9d).  

 

 
Fig. 9. Network measures of the aggregate (overlaid) conductivity activation energy (Ea) Visibility Graph (color online) 
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Finally, the modularity classification node-distribution 

(Fig.9f) illustrates the existence of three connected 

communities, namely the community Q1={30, 100, 110, 

120}oC, Q2={140, 160, 180, 250, 290, 320}oC, and 

Q3={220, 270}oC. The configuration of the third (Q3) 

community is probably related to the availability of 

measurements at the 220 and 270oC temperatures, and for 

the 0sccm and 9cssm hydrogen flow levels; therefore is 

not that insightful. However, the division of the aggregate 

network into the communities Q1, Q2, and Q3 is insightful 

in revealing the “gate” (or transitive) role of the 

temperatures 120oC and 180oC in the TB={120, 140, 160, 

180}oC group’s configuration, which implies that these 

temperatures can operate as gates (or thresholds) of 

different states in the levels of conductivity activation 

energy. The overall network analysis approach illustrates 

the existence of three distinct conductivity activation 

energy states (defined by the TA, TB, and TC groups), which 

correspond to different structural (semiconductor) 

behaviors of the a-SiC:H thin-film alloys, and instructs 

seeking for optimum structure within the temperature 

range of {120, 140, 160, 180}oC.  

 

 
4. Conclusions 
 

This paper applied a multilevel analysis using 

methods of statistical physics to detect structures of 

semiconductor a-SiC:H thin-film alloys with the best 

possible electrical performance expressed as a function of 

the temperature and hydrogen flow. The analysis is built 

on statistical physics and particularly on statistical and 

complex network analysis. On the one hand, the statistical 

inference analysis revealed that: at zero hydrogen flow 

levels, the conductivity activation energy is statistically 

indifferent to the temperature, whereas, for non-zero 

hydrogen flows, temperature affects the semiconductor’s 

structure. Also, the application of non-zero hydrogen 

flows can statistically change the levels of conductivity 

activation energy. However, variations amongst 

conductivity activation energy levels cannot be considered 

statistically significant. In a pattern recognition approach, 

the supply of hydrogen flow to the semiconductor body 

led to better semiconductor structures at lower 

temperatures, where a zone of 17-20sccm appeared with 

better activation energy levels. On the other hand, the 

network analysis based on the visibility graph 

transformation revealed a rich-club configuration at a 

temperature range [120,180]oC and three distinct 

conductivity activation energy levels, which correspond to 

different structural behaviors of the semiconductor a-

SiC:H thin-film alloys. The overall analysis provided 

insights of dealing with multivariate structural analysis, 

within the context of insufficient information.  
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